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Abstract. An efficiently managed irrigation system is important in order to achieve the dual goals of 
water conservation and acceptable turf quality. The main objective of this study was to identify 
changes and correlations among turf visual rating, canopy reflectance, canopy temperature and 
digital imagery index in evaluating turfgrass quality under different irrigation treatments. A study of 
ten irrigation treatments on tall fescue plots combining controller technology (a standard time-based 
system, two soil-moisture-based systems, and an evapotranspiration based system) and watering 
frequency (once per week, twice per week and seven days per week) replicated four times in a 
randomized complete block design was done at the North Carolina State University Lake Wheeler 
Turf Field Laboratories. Different turf quality measurements were taken on a weekly basis during the 
summer of 2008 and 2009. An imagery analysis index, dark green color index (DGCI), was strongly 
and positively correlated with a visual rating index(r = 0.67 and 0.85, for 2008 and 2009 respectively) 
and normalized difference vegetation index (NDVI) (r = 0.83 and 0.87, for 2008 and 2009 
respectively), but negatively and weakly correlated with canopy and ambient air temperature 
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differentials (∆T) (r = -0.06 and -0.24, for 2008 and 2009 respectively). Because of their objective 
measurements, digital imagery analysis and canopy spectral reflectance techniques can be used 
effectively to evaluate the variability in turf quality under different irrigation treatments (technology x 
frequency), thus improving irrigation management finding the treatment has low water-use with 
acceptable turf quality. 

Keywords: Tall fescue, Turf quality, Digital image analysis, Canopy spectral reflectance, Visual 
rating, Canopy-air temperature differentials, Dark green color index. 
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Introduction 

Traditional methods of determining turf quality have often been based on a visual rating system 
developed by the National Turfgrass Evaluation Program (NTEP) with a scale ranging from 1 to 
9, with 1 representing the lowest quality and 9 representing the highest quality turf.  A rating of 5 
or above is considered minimally acceptable (Horst et al., 1984; Morris, 2002). This scale is 
mainly a function of color, density, and uniformity (Horst et al., 1984). Differences in 
assessments by humans occur because individuals differ in their capability to perceive various 
wavelengths of visible light, which can lead to differences in visual estimates of turf quality (Mirik 
et al., 2006). This rating system is biased due to subjectivities of the raters and has inaccurate 
estimation of turf quality (Keskin et al., 2003). 

Spectral reflectance analysis has been introduced as an alternative to visual ratings for 
assessment of turf quality as a quick, reliable, and non-destructive tool.  The vegetative 
physiological changes, such as; leaf water content and chlorophyll concentration, are affected 
by water deficiency in turfgrass (DaCosta et. Al., 2004; Jiang and Huang, 2000). Canopy 
spectral reflectance measurements have been used to estimate plant quality under different 
irrigation and/or fertilization applications (Fernandez et al., 1994; Fenstermaker-Shaulis et al., 
1997; Rollin and Milton, 1998; Osborne et al., 2002b; Baghzouz et al., 2007). Reflectance at 
both visible (VIS) and near-infrared (NIR) ranges was used to develop the normalized difference 
vegetation index (NDVI) (Rouse et al., 1973), where NDVI is defined as (NIR – Red) / (NIR + 
Red).  NDVI is commonly use to evaluate turfgrass canopy characteristics (Sönmez et al., 2008; 
Xiong et al., 2007; Jiang et al., 2003; Trenholm et al., 1999).  NDVI has also shown to effectively 
express changes in leaf water content and soil moisture in perennial ryegrass under water 
deficit conditions (Dettman-Kruse et al., 2008).   

Turf canopy temperature is another tool used to measure responses of turfgrass to water 
deficiency (Jiang et al., 2009).  Turfgrass canopy temperature changes according to the 
moisture level in the grass with leaf canopy temperature exceeding ambient air temperature 
under turfgrass drought stress as a result of transpiration reduction (Jiang et al., 2009). Clark 
and Hiller (1973) found canopy temperature of a well-watered crop were lower (2-3ºC) than 
stressed plant when water deficit occurred. The difference between plant canopy temperature 
and ambient air temperature (∆T) was studied as a tool to manage irrigation scheduling in 
Kentucky bluegrass by Throssell et al., (1987) as it reflects the water potential in turf leaves. 
Canopy and ambient temperature differentials (∆T) was found to be significantly correlated with 
NDVI (r = -0.54) when studying the quality of tall fescue [Festuca arundinacea Schreb] under 
water deficit conditions (Fenstermaker-Shaulis et al., 1997). 

Digital image Analysis (DIA) provides an alternative method to measure the reflectance from 
vegetated surfaces. DIA technique has been used to quantify canopy coverage in wheat (Lukina 
et al., 1999), soybeans (Purcell, 2000), and turfgrass (Richard et al., 2001). Karcher and 
Richardson  (2003) found that DIA showed strong agreement with visual ratings in evaluating 
turf color. An index known as the dark green color index (DGCI) was developed by Karcher and 
Richardson (2003) by using hue, saturation, and brightness (HSB) levels. They found a 
significant agreement between DGCI and visual rating. DIA provides an objective, unbiased, 
nondestructive, and consistent measurements. This technique is capable of providing rapid, 
accurate, and precise results as recent digital image collection equipment and image analysis 
software have the capability to acquire and process hundreds of images per hour and images 
can be stored for further analysis at the researcher’s convenience (Díaz-Lago et al., 2003). 
Digital imagery process is a cost-effective technique as it requires only a digital camera, 
computer, and an image analysis program. A low-cost digital camera, with white balance 
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adjusting, is sufficient for collecting images with low-quality Joint Photographers Expert Group 
(JPEG) compression format. Steddom et al. (2004) concluded that results from digital image 
analyses, using low-quality (JPEG) images, have a number of desirable qualities for data 
quantification and have the same results of those of a lossless format such as TIFF or RAW 
images. Furthermore, free digital image analysis programs are available online with data 
analysis capabilities similar to commercial image analysis programs. 

The objectives of this experiment were to determine if correlations were strong enough, 
between DIA results and other turf quality indicators used in this study, to warrant the use of 
digital imagery process in providing objective and quantitative estimates of turfgrass quality.   

Materials and Methods  

Site description 

This study was conducted at the North Carolina State University Lake Wheeler Turf Field 
Laboratory, Raleigh, North Carolina, in 2008 and 2009. The soil at the research site is classified 
as a Cecil sandy loam (fine kaolinitic, thermic, Typic Kanhapludults) although particle size 
distribution analysis from  soil cores taken from the site place the soil into the clay category by 
texture (USDA system). 

This study aimed to evaluate turf quality subjected to ten different water-use treatments. Three 
controller technologies (a standard time-based controller, ET-based controller, and soil water 
sensor-based system) with three irrigation frequencies (once per week, twice per week and 
daily irrigation scheduling) produced nine treatment combinations and the tenth treatment was 
an “on-demand” soil-water feedback system that uses two soil-water content setpoints to start 
and terminate irrigation instead of using a specific irrigation frequency. An Intellisense TIS-240 
series (Toro, Inc., Bloomington, MN) controller was used for the ET-based system. The Acclima 
Digital TDT RS-500 “add-on” system and Acclima CS-3500 “water on-demand” system (Acclima 
Inc., Meridian, ID) were used to evaluate soil-water sensor-based systems. Rain sensors (Irritrol 
Systems Inc., Riverside, CA) were added to the time-based and ET-based system to override 
irrigation in case of rainfall events. 

The study area was graded into two separate terraces prior to installation of an irrigation system 
used to irrigate turf plots. The irrigation system irrigates forty 4.0 m x 4.0 m plots independently 
using four quarter circle pop-up spray head sprinklers. All plots established to ‘Confederate’ tall 
fescue (Festuca arundinacea Schreb) using sod. Both terraces were divided into two 
replications of ten plots, each representing the ten different irrigation treatments. Each irrigation 
treatment was replicated four times in a randomized complete block experimental design 
(Figure 1). 

Plots were fertilized with a soluble fertilizer (25-6-12 NPK) at a rate of 48 kg ha-1 in February, 
April, and again in November. The grass was mowed twice a week at height of 5.5 cm. 
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Figure 1: Site schematic showing plot layout and irrigation treatments 

Turf quality measurements 

Turf quality was monitored on weekly basis during the monitoring seasons of 2008 and 2009 by 
using four different techniques. In 2008, digital images were collected for a period of four weeks 
(14 August through 4 September), turf was visually rated for a period of twelve weeks (5 June 
through 21 August), NDVI value was taken for a period of seventeen weeks (15 May through 4 
September), and ∆T was measured for a period of sixteen weeks as NDVI measurements, 
except for ninth week (10 of July) as weather was unstable. In 2009, all turf quality 
measurements were taken for a period of fifteen weeks (7 May through 11 August). Turf was not 
rated visually for the last week. 
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1. Visual Rating: Turf quality was visually assessed by an experienced turf elevator for all plots 
and rated on a scale of 1 to 9 representing poor to excellent quality respectively (Morris and 
Shearman, 1997).  
2. Spectral Reflectance: Canopy spectral reflectance was taken with the aid of a Field Scout 
TCM 500 Turf Color Meter (Spectrum Technologies Inc., Plainfield, IL) to assess the turf quality 
by a “normalized difference vegetation index” (NDVI). NDVI is an index obtained by measuring 
the spectral radiation reflected by plants at different light wavelengths in both the visible and 
near-infrared ranges (Trenholm et. al.,1999, Keskin et. al.,2003). The Field Scout meter has its 
own internal light source that emits visible and near infrared light (NIR) from a single light-
emitting diode light source. Reflectance at these different wave lengths was used to develop the 
normalized difference vegetation index (NDVI) (Eq. 1). 

NDVI = (NIR – Red) / (NIR + Red)             (1) 

Where: 

NDVI = Normalized Difference Vegetation Index 

NIR = Reflectance in the band of 850 ± 5 nm 

Red = Reflectance in the band of 660 ± 5 nm 

A T-handle extension was attached to the TCM500 meter to allow measurements while 
standing. One reading per plot was taken on a weekly basis during the sampling season of 2008 
and five readings were taken per plot during the sampling season in 2009 to increase the 
sampled area because of the relatively small area sample by the Field Scout meter. Each 
sample presents about 0.03% of the whole area of the plot. The five values taken within one plot 
were averaged to represent the whole plot.  

3. Canopy Temperature: Turf canopy and ambient air temperature were also measured on 
weekly basis by using a handheld infrared thermometer (Spectrum Technologies Inc., Plainfield, 
IL). Differential temperatures (∆T) were obtained by subtracting canopy temperature from 
ambient air temperature. Turf canopy temperature was measured by taking one reading per plot 
in full sun while avoiding shadows and windy conditions. Sampling was performed between 
12:00 and 15:00 EST (Eastern Standard Time) holding the thermometer at 1.0 m above the turf 
at an angle of 45° from horizontal as proposed by Throssell et al. (1987). 

4. Digital Image Analysis: Turf quality was evaluated by using digital image analysis process 
that included; (1) acquiring digital images by a digital camera in jpeg (joint photo graphic experts 
group, .jpg) format under consistent lighting, (2) extracting the red, green and blue (RGB) levels 
for all pixels in the acquired images using ImageJ software, (3) converting the RGB levels into 
Hue, Saturation and Brightness (HSB) parameters (Adobe Systems, 2002), and (4) creating a 
turf color index from the HSB values known as the dark green color index (Eq. 2) developed by 
Karcher and Richardson (2003).  

                                       DGCI = [(H - 60)/60 + (1 – S) + (1 – B)]/3                                (2) 

Where: 

DGCI = dark green color index, 

H, S, B = hue, saturation, and brightness levels 

Turf images were taken with the aid of a Nikon COOLPIX 4300 digital camera (Nikon Inc., 
Melville, NY). The images were collected in JPEG format, with a color depth of 16.7 million 
colors, and an image size of 640 x 480 pixels (about 80 kilobytes per image). Camera settings 
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were adjusted manually to guarantee the same conditions for all images and were set to a 
shutter speed of 1/8 s, an aperture setting of f/2.8, and a focal length of 80 mm. All images were 
collected from the plots by using a uniform light source (Ikemura, 2003) by using a light box 
(Figure 2) to prevent any changes in light source due to shadows or cloudy weather. The 
camera was adjusted manually for white balance by using a grey piece of paper to adjust the 
camera's color sensitivity to preserve natural colors under the fluorescent lighting inside the box. 
Images were collected for all forty plots weekly for a period of four weeks in 2008, and for a 
period of fifteen weeks in 2009. One image was taken at the center of the plot in 2008, and 
sampling was increased to five images per plot in 2009 because of the relatively small area 
captured by each image (about 0.6% of the whole plot area). Images were downloaded to a 
personal computer for subsequent analysis. A macro was developed in ImageJ software 
(National Institutes of Health, Bethesda, MD) to extract R, G, and B values and pixel location 
from each pixel for 200 digital images, taken each week in 2009 and to save them to a text file 
for further analysis. Code written in R, was used to (a) convert RGB levels on a scale of 0 – 255 
to percentages by dividing each value by 255, (b) convert the percent RGB values into hue, 
saturation, and brightness (HSB) levels for each pixel according to Adobe Systems (2002), and 
(c) develop a color index, by using the calculated HSB levels to a dark green color index (DGCI) 
as proposed by Karcher and Richardson (2003). 

 

 
Figure 2: Light box details for digital imagery process 
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Statistical Evaluation 
Correlation coefficients and linear regression analysis were used to judge the performance of 
DGCI against other turf quality measurements. The Pearson’s correlation coefficients (r) were 
determined by constructing a correlation matrix between visual rating, NDVI, ∆T, and DGCI 
using the PROC CORR procedure of the Statistical Analysis System (9.1 edition; SAS Institute, 
Cary, NC) using all data set for years 2008, and 2009. Linear regression analyses were 
conducted for all turf quality data collected across all irrigation treatments and replications (i.e. 
forty data pairs per week for each combination) during 2008 and 2009 to determine the 
relationships between different turf quality indices and DGCI developed by the digital imagery 
analysis process. 

Results and Discussions 
Correlation analyses showed statistically significant relationships among visual rating of 
turfgrass quality,  dark green color index (DGCI), normalized difference vegetation index (NDVI), 
and canopy-air temperature differential (∆T) in both monitoring seasons of 2008 and 2009 
(Table 1). Those correlations were stronger in 2009 compared to 2008, particularly for DGCI 
with NDVI and visual rating. Table 2 shows summary statistics by year for the quality ratings 
measures.  

Table 1. Pearson correlation coefficients among normalized difference vegetative index, canopy 
and air temperature differential, dark green color index, and visual turf ratings across all 40 plots 
in both experiment years of 2008 and 2009 
  2008  2009 

    ∆T DGCI VR ∆T DGCI VR 
Correlation -0.18 0.83 0.75 -0.29 0.87 0.8 

P-Value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 NDVI 
n 640 160 480 600 600 560 
   -0.06 -0.26   -0.24 -0.25 
    0.48 < 0.0001   < 0.0001 < 0.0001 ∆T 
   160 440   600 560 
     0.67     0.85 
      < 0.0001     < 0.0001 DGCI 
      80     560 

NDVI = normalized difference vegetative index, ∆T = canopy- air temperature differential, DGCI = dark 
green color index, and VR = visual turf ratings. 

Table 2. Turf quality measurement summary statistics  
  2008   2009 
Statistic NDVI ∆T DGCI VR  NDVI ∆T DGCI VR 
N         680 640 160 480  600 600 600 560 
Min.     0.442 4.000 0.312 3  0.472 4.500 0.208 2 
Max. 0.780 33.500 0.451 8  0.782 43.600 0.469 9 
Mean      0.710 17.880 0.396 6.706  0.712 22.027 0.396 6.836 
STDEVa         0.037 6.103 0.032 0.854  0.032 6.420 0.036 1.118 
CV (%)b 5.2 34.1 8.1 12.7  4.5 29.2 9.2 16.4 

a. Standard Deviation   b. Coefficient of Variation 

NDVI = normalized difference vegetative index, ∆T = canopy- air temperature differential, DGCI = dark 
green color index, and VR = visual turf ratings. 
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Visual rating turf quality results were positively correlated with DGCI and NDVI but negatively 
correlated with ∆T. In 2008, visual rating of turf quality was correlated strongly with NDVI (r = 
0.75, P < 0.0001), DGCI (r = 0.67, P < 0.0001); the weakest correlation was with ∆T (r= -0.26) 
although the correlation was still statistically significant (P < 0.0001). In 2009, visual rating was 
also significant with DGCI (r = 0.85, P < 0.0001), NDVI (r = 0.8, P < 0.0001) and ∆T (r = -0.25, P 
< 0.0001), whereas DGCI was strongly correlated with NDVI (r = 0.83 to 0.87, P < 0.0001) in 
both years respectively. Canopy and air temperature differential (∆T) was significantly 
correlated with visual rating but not as high as DGCI and NDVI. The ∆T wasn’t correlated 
significantly with DGCI in 2008 (r = -0.06, P = 0.48).  

Correlation coefficients between DGCI and other turf quality indicators for all weeks in 2009 are 
plotted in Fig. 3, to show the degree of correlation on weekly basis. Strong correlations are 
shown between visual rating and DGCI for all weeks in 2009 (r ≥ 0.85, P < 0.0001). Good 
correlations were reported also between NDVI and DGCI results in the first four weeks in 2009 
(r ranging from 0.72 to 0.89, P < 0.0001) where the relationship between them were stronger in 
the rest of the weeks (r ranging from 0.91 to 0.95, P < 0.0001).Also, it was observed that the 
relationship between DGCI and canopy-air temperature differential (∆T) was strongly correlated 
(r ≥ -0.70, P < 0.0001) most of the time (9 weeks out of 15 weeks) but still not as strong as the 
correlation between visual rating and NDVI (Figure 3). Other weeks showed poor correlation 
between DGCI and ∆T. There were a couple of positive correlation weeks (2 and 6) that 
resulted in overall poor correlation between the two variables (r = -0.24) as shown in table1. 
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Figure 3: Correlation coefficients between DGCI and other turf quality indicators during all 

monitored weeks in 2009 

 
*, **, *** Significance at 0.1, 0.01 and 0.001 level, respectively. 
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Greater variation was found among DGCI measurements (CV%= 8.1 and 9.2) than NDVI 
measurements (CV%= 5.2 and 4.5) for 2008 and 2009, respectively. These higher variations 
may relate to the relatively small area captured by the canopy spectral reflectance sample when 
compared to the digital imagery sample that is 20 times larger. However, both samples were 
taken from the same location. Also, DGCI tended to be overestimated for denser plots where 
darker green color pixels will exceed as a result of shadows that occur when the digital images 
are captured. 

The slight variability in the relationship between visual ratings and both digital imagery and 
canopy spectral reflectance results may be due to the subjective nature of visual ratings and its 
discrete scale that is used for rating turf quality (scale from 1 to 9) versus a continuous scale 
used in digital imagery and canopy spectral reflectance processes, which predisposes DGCI 
and NDVI to a wider range of possible measurements and more variability. 
The weakness in the relationship between digital imagery process and turf canopy temperature 
measurement results is likely caused by fluctuations in turf canopy temperature due to changes 
in weather conditions, such as solar radiation (cloud interception), humidity, and wind speed 
(advection of energy), during the measuring period. A weather station (Watchdog 700, 
Spectrum Technologies, Plainfield, Illinois) was installed at the site to record weather data such 
as; air temperature, relative humidity, wind speed, wind gust, wind direction, solar radiation, and 
rainfall measurements every 15 minutes. Two adjacent weeks, 5 and 6 in 2009, were taken as 
examples of strong and weak correlation between DGCI and ∆T, respectively (Figure 3) and 
compared in terms of weather data statistics (Table 3) prevailing at the time of the canopy 
temperature measurements. Strong correlation was found between DGCI and ∆T in week 5 of 
the 2009 monitoring season (r = -0.78, P < 0.0001) (Figure 3) and weather data showed 
relatively small coefficients of variation (CV %) across the range of different weather variables, 
solar radiation level (CV% = 1.76), ambient air temperature (CV% = 0), humidity (CV% = 1.31), 
and wind speed (CV% = 8.66) (Table 3). The following week (week 6), showed weak correlation 
between DGCI and ∆T (r = 0.11, P = 0.51) (Figure 3), and was found to have much higher 
coefficients of variation for the same weather variables, solar radiation (CV% = 63.79), ambient 
air temperature (CV% = 1.81), humidity (CV% = 4.21), and wind speed (CV% = 20.0) (Table 3).  
 

Table 3. Statistics for weather data reported during canopy turf temperature measurements in 
two adjacent monitoring weeks (5 and 6) of 2009 monitoring season 

     WEEK 5       WEEK 6 
W/m2 °F % mph W/m2 °F % mph Date and 

Time SRDa TMPb HMDc WNSd
Date and 

Time SRD TMP HMD WNS 
6/3/2009 13:05 888.2 87.4 40.3 6 6/11/2009 13:12 1082.4 82.3 62 5
6/3/2009 13:20 894.1 87.4 39.4 7 6/11/2009 13:27 317.6 83 63.4 6
6/3/2009 13:35 864.7 87.4 39.4 7 6/11/2009 13:42 488.2 85.2 58.4 4
Min. 864.7 87.4 39.4 6 Min. 317.6 82.3 58.4 4
Max. 894.1 87.4 40.3 7 Max. 1082.4 85.2 63.4 6
average 882.33 87.4 39.7 6.67 average 629.4 83.5 61.27 5
STDEVe 15.55 0 0.52 0.58 STDEV 401.48 1.51 2.58 1
CV (%)f 1.76 0 1.31 8.66 CV (%) 63.79 1.81 4.21 20

a. Solar Radiation   b. Air Temperature    c. Humidity    d. Wind Speed      e. Standard Deviation   f. Coefficient of 
Variation 
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Fluctuation in solar radiation may be the greatest cause of inaccurate turf canopy temperature 
measurements, as grass canopy temperature showed a linear increase with solar radiation level 
(Feldhake et al., 1985). Feldhake and Edwards (1992) found that for a 1 kPa increase in vapor 
pressure deficit, canopy temperature decreased 2.1°C and each 100 W/m2 increase in net 
radiation causes increased canopy temperature 0.6°C. Fluctuation in wind speed did not have a 
real effect on turf canopy temperature since measurements were taken with wind speed less 
than 1mph and thermometer readings remained stable. 

Linear regression analysis results are summarized in Table 4, Fig. 4, and Fig. 5. Digital imagery 
and spectral reflectance measurements; DGCI and NDVI, are reported on a continuous scale 
where visual rating measurements were reported on a discrete scale. The relationships of these 
two measurements were significant with visual rating results. These relationships were better in 
2009 (r2 = 0.71 and 0.65, respectively) than 2008 (r2 = 0.45 and 0.56, respectively). The 
strongest relationship was between DGCI and NDDVI in both 2008 and 2009 (r2 = 0.70 and 
0.75, respectively). Canopy and air temperature differential (∆T) had the weakest relationship 
with the other turf quality measurements although it had statistical significance for slope and 
parameter estimates most of the time. 

 

Table 4. Linear regression results between different turf quality indicators.  

Dependent 
Variable 

Independent 
Variable 

Data 
observation 

number 
Slope Signif. 

level 
Intercept Signif. 

level 
Determination 

Coefficient  Y
ea

r 

y x n β1  P  β0  P r2 
DGCI 80 17.22 ≤0.0001 -0.241 ≤0.0001 0.45 
NDVI 480 17.14 ≤0.0001 -5.395 ≤0.0001 0.56 VR 
∆T 440 -0.036 ≤0.0001 7.34 ≤0.0001 0.07 

NDVI 160 0.658 ≤0.0001 -0.068 ≤0.0001 0.70 
DGCI 

∆T 160 -0.0003 0.48 0.401 ≤0.0001 0.003 

20
08

 

NDVI ∆T 640 -0.0011 ≤0.0001 0.73 ≤0.0001 0.03 
DGCI 560 25.79 ≤0.0001 -3.389 ≤0.0001 0.71 
NDVI 560 27.79 ≤0.0001 -13.05 ≤0.0001 0.65 VR 
∆T 560 -0.0437 ≤0.0001 7.784 ≤0.0001 0.06 

NDVI 600 0.987 ≤0.0001 -0.307 ≤0.0001 0.75 
DGCI 

∆T 600 -0.0014 ≤0.0001 0.426 ≤0.0001 0.06 

20
09

 

NDVI ∆T 600 -0.0014 ≤0.0001 0.743 ≤0.0001 0.08 

VR = visual turf ratings, DGCI = dark green color index, NDVI = normalized difference vegetative index, 
and ∆T = canopy- air temperature differential. 

 

Linear regression equation form: y = β1 x + β0  
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Figure 4: Relationship between different turf quality indicators during 2008 monitoring season. 
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Figure 5: Relationship between different turf quality indicators during 2009 monitoring season. 
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Conclusion 
The evaluation and comparison of the four turf quality evaluation techniques that were 
considered in this study enabled us to draw the following conclusions about the digital imagery 
process.  

• Both DGCI and NDVI provide objective, quantitative turf quality evaluation and little to no 
prior experience is needed. On the other hand, visual rating technique needs substantial 
training and measurements may vary from day to day for the same evaluator and different 
values may be reported because of its subjectivity and inherent error in human evaluators.  

• Visual ratings are reported on a discrete scale, but DGCI and NDVI were reported turf 
quality on a continuous scale which brings turf quality estimates to more realistic 
measurements. 

• Variations between DGCI and NDVI may relate to the relative small area of canopy spectral 
reflectance sample are compared to the digital imagery sample area. Also, DGCI tended to 
be overestimated for denser plots where darker green color pixels will exceed as a result of 
shadows that occur when the digital images are captured. 

• Turf canopy temperature should be taken under stable weather conditions to report its 
response accurately. Otherwise, a model should be used to adjust the turf canopy- air 
temperature deferential (∆T) according to the variation in weather variables to guarantee 
accurate measurements. Martin et al. (1994) concluded that; the effects of vapor pressure 
deficit of the air (VPD), net radiation load (Rn), and wind speed (WS) must be taken into 
account to predict accurately the canopy-air temperature differential, (Tc – Ta) of turfgrass.  

• Results from this study illustrate that changes in DGCI described effectively the variability 
occurred in turf canopies of tall fescue at various irrigation treatments, thus providing 
another tool for improving irrigation management. 
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